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Pathways from eye-to-cortex

Schematic view

The primate retina has about 10^7 cones that send visual signals to the  optic nerve via about 10^6 ganglion cells.  The optic 
nerves from the  two eyes meet at the optic chiasm where about half of the fibers cross over and  the other half remain on 
the same side of the underside of the brain. Before  synapsing in the lateral geniculate nucleus, about 20% of these fibers 
that  now comprise the optic tract branch off to the superior colliculus--a structure  involved with eye movements. The rest 
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of the optic tract fibers  synapse on cells in the lateral geniculate nucleus. Cells in the lateral  geniculate nucleus send their 
axons in a bundle called the optic radiation  to layer IV (one of six layers) of primary visual cortex.

Functions of the Chiasm and Lateral geniculate nucleus (LGN)

The optic chiasm routes neuronal information so that information  from corresponding points on the left and right eyes can 
come together at  cortex for binocular vision, and in particular stereo vision.  Typically animals with frontal vision have 
nearly complete cross-over, and animals with  lateral eyes (e.g. fish) have little or no cross-over. 

The nervous system has gone to considerable length  to bring information from the two eyes together early on. Although 
there seems to be little if any interaction between neurons in the LGN, the arrangment of the optic chiasm is the first step 
towards the eventual construction of a topographic cortical map.

In fact, there is a general principle that becomes even more apparent when  one looks at maps that pervade cortical 
organization: 

Neural computations  often require close  phyiscal connectivity between neurons

Anderson has a discussion of topographic and tonotopic maps in cortex. Later on we will see some of the consequences of 
self-organizing principles that serve to minimize wiring length when we study Kohonen networks.

The neurons of lateral geniculate nucleus do more high-pass filtering,  and the cells are characterized by fairly symmetrical 
center-surround  organization like the ganglion cells. They show even less response to uniform  illumination than ganglion 
cells. Despite the fact that neurons from the two  eyes exist within the same nucleus, no binocular neurons are found in LGN.
We have to wait until cortex to see binocular neurons. Although the LGN is  often considered a relay station,  feedback 
from cortex suggests possible role of attention mechanisms (see Crick, 1984 for  a speculative neural network theory of  
LGN and reticular function). 

Sillito et al.  (1994) have found  Feature-lined synchronization of thalamic relay cell firing induced by feedback from the 
visual cortex. Nature, 369, N. 9, 479-482. 

Although we will bypass a treatment of the superior colliculus, its  primary role is in the control of eye movements--
a highly non-trivial  problem requiring coordination of head and eye movements in the context of  a constantly changing 
environment. 

Primary Visual Cortex

Primary visual cortex: Large scale organization

à Topographic map

The striate cortex is laid out as non-linear topographic map with 80%  of cortical   area devoted to about 20% of visual field, 
reflecting the higher  acuity of foveal vision. Because of the cross-over at the optic chiasm, the  left visual field (right retina) 
maps to right hemisphere. 
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Axons from the optic radiation synapse on layer IV neurons of the  primary visual cortex (also known as area 17, striate 
cortex or V1).  Cortex is  anatomically structured in layers, numbered from I (superficial) to VI  (deep). 

à The hypercolumn of visual cortex

The cells of the primary cortex  are organized into columns running roughly perpendicular to the surface in which  cells tend 
to have the same orientation preference and degree of binocularity. A  "hypercolumn" is a group of columns spanning all 
orientations and both eyes. In the cortex, we see for the first time binocular cells. 

Embedded in the cortical hypercolumns  are cytochrome oxidase blobs in 
which are found opponent color cells that seem to lack strong orientation selectivity  (Livingstone, M. S., & Hubel, D. H., 
1984;  Livingstone, M. S., & Hubel, D. H., 1987).
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Primary visual cortex: Neuron properties

Apart from the neurons the LGN fibers synapse on, and in contrast with  receptive field characteristics of earlier neurons, 
many cortical cells are:

¥ orientation selective 

¥ binocular 

¥ spatial frequency selective, with narrow tuning and

¥ motion selective

¥ spatial phase selective

Some of the major contributions to our understanding of visual cortex was due to the research of Hubel, D. H., & Wiesel, T. 
N. (see 1968 reference). Hubel and Wiesel won the Nobel prize for their work.

à Simple cells

There are two main types of cells. The simple  cells are roughly linear except for  rectification, are spatially and temporally 
band-pass, and show spatial phase  sensitivity. A first approximation model for simple cell response firing rate (in impulses/
sec) is:

                 R =  s
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You can see that this has the same form as the generic neuron model, except that the inputs are the physical stimulus values.

Where Wij are the receptive field weights, and Lij the image intensity values at spatial location (i,j). An example would be a 
Gabor function (see discussion and figures below):
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The half-wave rectification operation, s,  sets negative values to zero, and is linear for positive values:

x

y
y = s(x)

And as we saw at the begining of the course, a better model is obtained by replacing the straight sloping line with one that 
saturates at high values. This model is steady state. To include time domain dependencies requires the introduction of a 
band-pass temporal tuning characteristics.  
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à Complex cells

The second major class of neurons is that of complex  cells. Like simple cells, complex cells are spatially and  temporally  
band-pass, show orientation and motion direction selectivity, but are insensitive to  the phase of a stimulus such as a sine-
wave grating. Rather than half-wave rectification, they show full-wave rectification. A model for complex cells would 
resemble the sum of the outputs of several  subunits positioned at several nearby spatial locations. Each subunit would 
resemble  simple cell with a linear spatial filter followed by a threshold non-linearity. 

One way of obtaining the phase insensitivity would be to use subunits with cosine and sine phase receptive fields. We see 
below how a neural network can be built that can be used to detect edges--it  combines simple cell outputs into outputs 
similar to those of complex cells.

The motion selectivity could be built in with appropriate inhibitory connections between subunits. Full-wave 
rectification could be built with subunit pairs that have excitatory and inhibitory receptive fields centers. Both simple and 
complex cells show contrast normalization--a feature not included in the above simple model. For a discussion of models of 
simple and complex cells see Heeger (1991).

à End-stopped cells

A third class of cells are the end-stopped  (or "hyper-complex") cells  that have an optimal orientation for a bar or edge 
stimulus, but fire most actively if the bar or edge terminates within the receptive field, rather than extending beyond it. It 
has been suggested that these cells act as "curvature" detectors. (Dobbins, A., Zucker, S. W., & Cynader, M. S., 1987). 

These cells are also thought to be important for detecting occluding surfaces and the perception of illusory contours.

Functions of Primary Cortex

à Stereo

As mentioned earlier, primary cortex brings together information  from the two eyes in single neurons. This information is 
important for coordinated eye movements and stereo  vision. Although V1 cells are predominantly binocular, it was at first 
thought that disparity selectivity did not arise until V2 (Hubel and Wiesel, 1970). However, there is now evidence for 
disparity selective cells in V1 and V2 (Poggio, G., F., & Poggio, T. ,1984). Disparity selectivity is a trivial task for single 
bar stimuli, and it wasn't until relatively recently that neurons were found that effectively solve the problem of false 
matching (Poggio and Talbot, 1981).

   One possible algorithm for stereo vision is discussed in: Poggio, T. (1984). Vision by Man and Machine. Scientific 
American, 250, 106-115. 

This algorithm is related to Hopfield networks that we will study later in this course.

Stereo vision has received a lot of attention in both computer and biological vision over the last 15 years. Later we will look 
at a neural network model of stereopsis.
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à Motion

The directional selectivity of cells in  striate cortex provide a form of early motion detection, akin to that described for 
invertebrate and rabbit peripheral vision. This detection  is only local and  thus ambiguous. Cortical cells suffer from the 
"aperture problem", and further computation is  required to disambiguate object motion. Cortical cells are also selective for 
speed (Orban et al., 1983).   Both the motion selectivity and  binocularity suggest a general hypothesis for  cortical function: 
it  links information likely  to have a single environmental cause for  subsequent extra-striate processing.

Anderson discusses a neural network solution to the aperture problem in Chapter 10.

à Spatio-temporal filtering

Beginning with the psychophysical results of Campbell and Robson  (1968), and continuing with studies of the spatial and 
temporal frequency  selectivity of simple and complex cells, there has emerged a picture of how images may be processed 
in the visual cortex. Let us look at spatial frequency in detail with a view to understanding its computational function in 
vision.

Spatial frequency filtering

à Basis set for representing visual information

Psychophysics and physiology

The results of masking, adaptation, and other psychophysical studies of spatial and orientation frequency selectivity 
in human vision are surprisingly consistent.

A cortical basis set for images

Both the psychophysical and neurophysiological data could be accounted for, in part,  by assuming the visual system 
performed a quasi-Fourier analysis of the image. One possible model assumes that the visual system computes the 
coefficients (or spectrum) of an image with respect to the following basis set, called a Gabor set (Daugman, 1988):
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The spectrum coefficients are represented by the firing rates of cells whose receptive field weights are represented by the 
above basis functions. In actuality, because as we saw earlier, simple cells behave more like linear filters followed by half-
wave rectification, there should be two cells for each coefficient-- "on" and "off" cells). One difference between this basis 
set, and the Fourier basis set (i.e. the optical eigenfunctions) is that this set has a local spatial restriction because of the 
Gaussian envelope. A second difference, which has major implications for computation, is that the basis functions are, in 
general, not orthogonal. Graphs of these functions typically look like wave-packets:
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Cosine
phase

Sine
phase

Here we've plotted a one-dimensional slice through a sine, and cosine Gabor function. In two dimensions (with the standard 
deviation , and the x and y spatial frequencies equal to 1), we can visualize the receptive field weights as follows.

à  Visualizing the Gabor functions:

cgabor[x_,y_, fx_, fy_,s_] := 
Exp[-(x^2 +  y^2)/s^2] Cos[2 Pi(fx x + fy y)];
sgabor[x_,y_, fx_, fy_, s_] := 
Exp[-(x^2 +  y^2)/s^2] Sin[2 Pi(fx x + fy y)];

à Relation of horizontal and vertical frequencies to orientation and oriented frequency

orientation : q = tan- 1 æ
çè
fy
fx

ö
÷ø

f requency : f = f 2
x + f 2

y

à Make a list of the orientations, and center frequencies of the basis set

vtheta = Table[i1 Pi/4, {i1,4}];
vf = {.25, 1, 4, 8};
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à Plot the elementary basis functions with the width, s,  proportional to the reciprocal of spatial 
frequency. This maintains a constant bandwidth in octaves.

Table[DensityPlot[
cgabor[x,y,vf[[i]] Cos[ vtheta[[j]] ], 

vf[[i]] Sin[ vtheta[[j]] ],
 1/vf[[i]] ], {x,-2,2}, {y,-2,2},
PlotPoints->24, Mesh->False],
{i, 2, 3}, {j, 1, 3}] // Short
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We've discretized the above continuous specification of the basis set. This leaves several free parameters. Most models of 
detection and masking get by with about no more than 6 spatial frequencies, about 12 orientations (specified by the ratio of 
horizontal and vertical spatial frequencies), and two phases (cosine and sine) at each retinal location. A subset of neurons 
representing a particular spatial frequency bandwidth  makes up a spatial frequency channel. (Although there is 
neurophysiological evidence for pairs of V1 neurons having receptive fields with 90 deg phase shifted relative to each other, 
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there is evidence against absolute phase--i.e. there is not a predominance of edge or bar type receptive fields. See Field and 
Tolhurst). One parameter still left unspecified is the standard deviation or spread of the Gaussian envelope. If large, this 
basis set approaches that of regular and  global Fourier analysis. The psychophysical data suggest that the standard deviation 
be such that the Gaussian envelope is about one cycle (at the 1/e point) of the sine wave. One cycle corresponds to about 1.5 
octaves spatial frequency bandwidth.

Why a local Gabor-function representation of visual information?

Why  would the visual system have such a representation? We have two types of explanations. One is that  encoding over 
multiple spatial scales is important for subsequent processing  that may involve edge detection, or stereoscopic matching, 
and so forth.  Analogous pyramid schemes have been developed for computer vision.    (See Adelson, E. H., Simoncelli, E., 
& Hingorani, R., 1987). The second explanation is in terms of economical encoding which we pick up on briefly below. (An 
interesting historical note is that many of early attempts to understand visual cortical receptive fields in terms of filters 
localized in space and spatial frequency were forerunners of modern wavelet theory.)

Edge Detection by Neural Networks

Because of the orientation selectivity of cortical cells, they have been  sometimes interpreted as edge detectors. It is easy to 
see how a sine-phase Gabor function filter (1 cycle wide) would respond vigorously to an edge oriented with its receptive 
field. This type of receptive field behaves as a 2D smoothing operator followed by a first order directional derivative. If one 
took the outputs of two such cells, one vertical and one horizontal, the sum of the squares of their outputs would 
approximate the squared magnitude of the gradient of the smoothed image:
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Morrone and Burr edge detector: combining sine and cosine phase filters

à Define the filters

cosinefilter[x_,sigma_,f_] := 
Exp[-(x/sigma)^2] Cos[2 Pi f x]

sinefilter[x_,sigma_,f_] := 
Exp[-(x/sigma)^2] Sin[2 Pi f x]
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Plot[cosinefilter[x,.5,1],{x,-1,1}]

-1 -0.5 0.5 1

-0.4
-0.2

0.2
0.4
0.6
0.8
1

à Define the input stimulus: an ideal edge

Plot[Sign[x],{x,-1,1},Axes->None]

à Calculate the response of a bank of cosine filters to the edge

cr[x_] := 
NIntegrate[cosinefilter[(x - x1),.5,1] Sign[x1],{x1,-1.5,1.5}]

Plot[cr[x],{x,-1,1},PlotPoints->10];
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à Calculate the response of a bank of sine filters to the edge

sr[x_] := 
NIntegrate[sinefilter[(x - x1),.5,1] Sign[x1],{x1,-1.5,1.5}]
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Plot[sr[x],{x,-1,1},PlotPoints->10];
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à Combine the outputs from the two banks by squaring and adding:

Plot[cr[x]^2 + sr[x]^2,{x,-1,1},PlotPoints->10]
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The peak of the squared sum is at the location of the edge.

Note the basic structure of the neural network for edge detection: 

1. A linear operations using weights from a cosine function, followed by a squaring operation

(how does this squaring relate to the sigmoidal non-linearities we have been using?)

2. A linear operation using weights from a sine function, followed by a squaring operation

3. A linear sum of the outputs

Perceived edges don't necessarily correspond to a sharp ideal edge, but can be blurry and noisy.

Morrone and Burr went on to show that one could do the same operation with different sizes of filters (i.e. different values 
of sigma), and each time the peak of the above operation for an ideal edge occurs at the edge transition. But even for blurry 
edges, the larger scale filters will still find a point in the transition region. Thus by adding up a whole set of neural outputs 
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over a range of scales, one could detect an edge. Another way of viewing this network is one that detects

phase coherence. Fourier theory shows that a step function can be built up of sine-waves of various frequencies whose zero 
crossings all line up with (say positive slope) at the edge transition.

Although one can build edge  detectors from oriented filters, simple cells cannot uniquely signal the  presence of an edge for 
several reasons. One is that their response is a  function of many different parameters. A low contrast bar at an optimal  
orientation will produce the same response as a bar of higher contrast at a  non-optimal orientation.  There is a similar trade-
off with other parameters  such as spatial frequency and temporal frequency. In order to make explicit the location of an 
edge from the responses of a population of cells, one would have to compute something like the "center-of-mass" over the 
population, where response rate takes the place of mass. Another problem is that edge detection has to take into account a 
range of spatial scales.  The cortical basis set does encompass a range of spatial scales, and in fact may be "self-similar" 
across these scales. See Koenderink (1990) for a recent theoretical discussion of "ideal" receptive field properties from the 
point of view of basis elements.

Economical representations by neurons in primary cortex

We might expect something like Fourier analysis of the image to result in efficient coding because of  the close relationship 
between Fourier rotations and Principal Components Analysis (e.g. Appendix A, Andrews, 1983). Fourier coefficients for 
natural images tend to be uncorrelated. Some work has been completed toward a functional explanation for  the orientation 
and spatial frequency tuning properties of  cortical receptive fields based on the statistics of natural  images (Field, 1994), 
but the story is far from complete. Recently, Barlow has argued that a decorrelated representation of sensory information is 
important for efficient learning (Barlow, 1990).

There has been recent rapid progress in the relationship between self-organizing models of visual cortex, and 
efficient coding of image information. For more on this, see:  Linsker, R. (1990) and  Barlow, H. B., & Foldiak, P. (1989). 
Linsker's computational studies show, for example, that orientation tuning, and band-pass properties of simple cells can 
emerge as a consequence of maximum information transfer (in terms of variance) given the constraint that the inputs are 
already band-pass, and the receptive field connectivity is  a priori limited.

Extra-striate cortex
Figure 10.9 in the Anderson book shows that cells in the visual cortex send their visual information to an incredibly 
complex, and yet structured collection of extra-striate areas. Any hypothesized function of striate cortex must eventually 
take into account what the information is to be used for.
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