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Introduction
We have seen how the synaptic connections between neurons can be represented by a connection matrix. The idea is to 

represent the synaptic weights for the ith output neuron by the values in the ith row of the connection matrix. Because of 

the large body of mathematical results on matrix algebra, it is worth our while to spend some time going over some of the 
basics of matrix manipulation. 

We will first review basic matrix arithmetic (addition and multiplication). Towards the end we will review the analog of 
division, namely finding the inverse of a matrix--something that was used in Lecture 5 to show how the steady-state 
solution of the feedback model of lateral inhibition was equivalent to a feedforward model with the appropriate weights.

You may wonder at times how all this is used in neural modeling. But as this course goes on, we will see how otherwise 
obscure notions of things like an "outer product" between two vectors, or the "eigenvectors" of a matrix are meaningful for 
neural networks. For example, the "outer product" between two vectors can be used in modeling learning, and the 
eigenvectors corresponding to a "matrix of memories" can represent stored prototypes. 

Basic matrix arithmetic

Definition of a matrix: a list of scalar lists

An mxn matrix has m rows, and n columns. Here is a 3x4 matrix:

MatrixForm[
Table[W[i,j],{i,1,3},{j,1,4}]]

W 1, 1 W 1, 2 W 1, 3 W 1, 4
W 2, 1 W 2, 2 W 2, 3 W 2, 4
W 3, 1 W 3, 2 W 3, 3 W 3, 4

The matrix can be written in standard form using subscripts as:



w11w12w13w14

w21w22w23w24

w31w32w33w34

 

 

 
 

 

 
 
 

And as we have seen, Mathematica represents a matrix as a list of lists:

%//StandardForm

W 1, 1 , W 1, 2 , W 1, 3 , W 1, 4 , W 2, 1 , W 2, 2 , W 2, 3 , W 2, 4 ,
W 3, 1 , W 3, 2 , W 3, 3 , W 3, 4

Remember, the symbol % in Mathematica  stands for the most recent output, %% stands for the second to last output, and 
so forth. 

Adding, subtracting and multiplying by a scalar

As with vectors, matrices are added, subtracted, and multiplied by a scalar component by component:

A = {{a,b},{c,d}};
B = {{x,y}, {u,v}};

Let's add A to B:

A+B

a x b y
c u d v

Subtracting B from A:

A-B

a x b y
c u d v

And if we multiply A by 3:
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3 A

3 a 3 b
3 c 3 d

Multiplying two matrices

We have already seen how to multiply a vector by a matrix: we replace the ith row of the output vector by the inner 

product of the ith row of the matrix with the vector.

In order to multiply a matrix A, by another matrix B to get C = AB, we calculate the ijth component of the output matrix 

by taking the inner product of the ith row of A with the jth column of B:

A.B

bu a x bv a y
du c x d v c y

Note that AB is not necessarily equal to BA:

B.A

ax c y b x d y
au cv bu d v

Laws of commutation, association and distribution

Look at the element in the upper left of the matrix BA above--there is no reason, in general, for ax+bu to equal ax + cy. 
That is, matrix multiplication does not commute. 

Apart from commutation for matrix multiplication, the usual laws of commutation, association, and distribution that hold 
for scalars hold for matrices. Matrix addition and subtraction do commute. Matrix multiplication is associative, so (AB)C = 
A(BC). The distributive law works too: 

A(B+C) = AB + AC
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Non-square matrices

It is not necessary for A and B to be square matrices (i.e. have the same number of rows as columns) to multiply them. But 
if A is an mxn matrix, then B has to be an nxp matrix in order for AB to make sense. For example, here F is a 3x2 matrix, 
and G is a 2x4 matrix.

F = {{a,b},{c,d},{e,f}};
G = {{p,q,r,s},{t,u,v,w}};

Dimensions[F]

3, 2

Dimensions[G]

2, 4

Because F has 2 columns, and G has 2 rows, it makes sense to multiply G by F:

F.G

a p bt aq bu ar bv as bw
c p d t cq du c r d v cs dw
e p f t eq f u er f v es f w

However, because the number of columns of G (4)  do not match the number of rows of F (3), G.F is not well-defined:

G.F

Dot::dotsh : Tensors
p q r s
t u v w

and
a b
c d
e f

have incompatible shapes.

p q r s
t u v w

.
a b
c d
e f
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Inverse of a Matrix

Dividing a matrix by a matrix: the identity matrix & matrix inverses

The matrix corresponding to 1 or unity is the identity matrix. Like 1, the identity matrix is fundamental enough, that 
Mathematica  provides a special function to generate n-dimensional identity matrices. Here is a 2x2:

IdentityMatrix[2]

1 0
0 1

How can one divide one matrix by another? We can divide numbers, x by y, by multiplying x times the inverse of y, i.e. 1/
y. So to divide matrices, we need to find a matrix Q such that when A is multiplied by Q, we get the matrix equivalent of 
unity.

A = {{a,b},{c,d}};

Mathematica  provides a built-in function to compute matrix inverses:

Q = Inverse[A]

d
ad bc

b
ad bc

c
ad bc

a
ad bc

We can test to see whether the product of a A and Q is the identity matrix, but Mathematica  won't go through the work of 
simplifying the algebra in this case, unless we specifically ask it to.

Q.A

ad
ad bc

bc
ad bc

0

0 ad
ad bc

bc
ad bc

Lect_6_Mathematica.nb 5



Simplify[Q.A]

1 0
0 1

Here is a simple numerical example:

B = {{1,-1},{3,2}};
R = Inverse[B]

2
5

1
5

3
5

1
5

B.R

1 0
0 1

Badly conditioned matrices

What if one row is a scaled version of another row? Then the rows are not linearly independent. In this case, the inverse is 
not defined.

B1 = {{1.5,1},{3,2.0}}

1.5 1

3 2.

Inverse[B1]

Inverse::sing : Matrix
1.5 1

3 2.
is singular.

1.5 1

3 2.

1

6 Lect_6_Mathematica.nb



Sometimes the rows are almost, but not quite, linearly dependent (because the elements are represented as approximate 
floating point approximations to the actual values). Mathematica may warn you that the matrix is badly conditioned. 
Mathematica  may try to find a solution to the inverse , but you should be suspicious of the solution. In general, one has to 
be careful of badly conditioned matrices.

Let's try finding the inverse and the determinant of the following matrix:

B2 = {{-2,-1},{4.00000000000001,2.0}};
Inverse[B2]

Inverse::luc : Result for Inverse of badly conditioned matrix
2 1

4.00000000000001 2.
may

contain significant numerical errors.

2.04709 1014 1.02355 1014

4.09418 1014 2.04709 1014

B2.Inverse B2

Inverse::luc : Result for Inverse of badly conditioned matrix
2 1

4.00000000000001 2.
may

contain significant numerical errors.

1. 0.
0. 1.

Were we lucky or not?

Determinant of a matrix

There is a scalar function of a matrix called the determinant. If a matrix has an inverse, then its determinant is non-zero. 
B2 doesn't have an inverse.

Det[B2]

9.76996 10 15

Why do we get a zero determinant for B2, but not for B1?
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Det[B1]

0.

Matrix transpose
We will use the transpose operation quite a bit in this course.  It interchanges the rows and columns of a matrix:

X Table wi,j, i, 1, 3 , j, 1, 4

w1,1 w1,2 w1,3 w1,4

w2,1 w2,2 w2,3 w2,4

w3,1 w3,2 w3,3 w3,4

You may have noticed that in the Cell menu, you can convert to various cell types.

In StandardForm on the input line, the transpose is written:

Transpose X ;

The output default is TradtionalForm. On the input line, in TraditionalForm, the transpose is written:

XT

w1,1 w2,1 w3,1

w1,2 w2,2 w3,2

w1,3 w2,3 w3,3

w1,4 w2,4 w3,4

What do the ouputs, X and XT  look like in StandardForm, MatrixForm?

Getting parts of a matrix

We can pull out the ith row of a matrix in Mathematica by simply writing W[[i]]. For example, the 2nd row of X is:
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X[[2]]

w2,1 , w2,2 , w2,3 , w2,4

What about ith column of a matrix? There is no equally simple way of getting the column of a matrix in Mathematica, but 

we can use the transpose operation to do it. Transpose[W] [[i]] produces the ith column of matrix W. For example, the 
3nd column of X is:

Transpose[X][[3]]

w1,3 , w2,3 , w3,3

Symmetric matrices

For a square matrix, the diagonal elements remain the same under transpose.

If the transpose of a matrix equals itself, HT = H, H is said to be a symmetric matrix. Symmetric matrices occur quite 

often in physical systems (e.g. the force on particle i by particle j is equal to the force of j on i). This means that the 
elements of a symmetric matrix H actually look like they are reflected about the diagonal. We constructed a symmetric 
matrix in Lecture 5:

H = Table[N[Exp[-Abs[i-j]],1],{i,5},{j,5}]

1. 0.4 0.2 0.05 0.01

0.4 1. 0.4 0.2 0.05

0.2 0.4 1. 0.4 0.2
0.05 0.2 0.4 1. 0.4

0.01 0.05 0.2 0.4 1.

Neural networks and symmetric connections

Do neural systems have symmetric connections? Real neural networks probably do not in general. Although, when the 
nature of the processing would not be expected to favor a particular asymmetry, we might expect that there should be 
symmetric connections on average. We made this assumption when setting up our lateral inhibition weight matrix, as seen 
above for H. Symmetric matrices have so many nice properties, that neural modelers (especially those from physics 
backgrounds) find the symmetry assumption almost irresistable. We'll see this later when we study the Hopfield networks. 
Lack of symmetry can have profound effects on the dynamics of non-linear networks and can produce chaotic trajectories 
of the state vector.
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Outer product of two vectors
We've already seen that the inner product of two vectors produces a scalar. In the next lecture, we will begin our 
discussion of Hebbian learning in neural networks. In this context, the outer product of an input and output vector will be 
used to model synaptic modification. Consider two vectors: 

f = {f1,f2,f3};
g = {g1,g2,g3};

The outer product is just all of the pairwise products of the elements of f and g arranged in a nice (and special) order:

h = Outer[Times,f,g]

f1g1 f1g2 f1g3
f2g1 f2g2 f2g3
f3g1 f3g2 f3g3

The outer product is also written in traditional row and column format as: f gT

fgT =
f1

f2

f3

 

 

 
 

 

 
 
 g1g2g3( )

Eigenvectors and eigenvalues

Eigenvectors

An eigenvector, x,  of a matrix, A,  is vector that when you multiply it by A, you get an output vector that points in the 
same direction as x:

Ax = λx

where λ is a scalar that adjusts the length change of x.

There can't be any more than n distinct eigenvectors for an nxn matrix--and there may be less. 
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A = {{1,2},{3,4}};

The Mathematica function Eigenvectors[A] returns the eigenvectors of matrix A as the rows of a matrix, which we'll call 
eig:

eig = Eigenvectors[A]

1
6

3 33 1

1
6

3 33 1

We can verify that eig[[1]] and A.eig[[1]] lie along the same direction by taking the dot product of the unit vectors 
pointing in the directions of each:

normalize[x_] := x/Sqrt[x.x];

normalize[eig[[1]]].normalize[A.eig[[1]]];
N[%]

1.

Eigenvalues

The eigenvalues are given by:

Eigenvalues[A]

1

2
5 33 ,

1

2
5 33

Eigenvalues and eigenvectors do not have to be real numbers. They can be complex, that is they can have imaginary 
numbers. In Mathematica, imaginary numbers are represented by multiples of I, the square root of -1:

Sqrt[-1]
Sqrt[-1]//StandardForm

I
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B = {{1,2},{-3,4}};
Eigenvalues[B]

1

2
5 15 ,

1

2
5 15

Optional Exercises

Exercise 1: Fun with eigenvectors: Preview of self-organization

Autocorrelation matrix is symmetric

Eigenvectors crop up in many different domains. In statistics, a measure of the structure of an ensemble of signals (e.g. of 
vectors) is the degree of correlation between their elements. Signals, such as sounds and visual images, have correlational 
structure that is taken advantage of in sound and image compression algorithms. One simple kind of statistical structure is 
characterized by the degree to which one can predict one element of a vector from one nearby. For images, the color of a 
pixel at location i is a pretty good predictor of the color at location j = i+1. As j gets far from i, however, the prediction 
gets worse. 

It is possible to characterize the degree of predictability by a matrix whose ijth element is big if the ith pixel of an image is 

a good predictor of the jth. One measure of predictability is the autocorrelation matrix:

W = Average[Outer[Times,x1,x1], Outer[Times,x2,x2],...]

Later on in this course, we will see how neural networks can be devised that find the hidden structure in a set of vectors x1, 
x2....by analyzing the autocorrelation matrix. What these networks do is to self-organize to discover the eigenvectors of 
the autocorrelation matrix of the ensemble of patterns they are exposed to. The eigenvectors represent the "prototypical" 
dimensions along which the ensemble varies. Statisticians call this "Principal Components Analysis" or PCA.

I won't show how it all works yet, but let's try a simple exercise that demonstrates that there can be surprising structure 
buried in an autocorrelation matrix.

We mentioned earlier that symmetric matrices are nice. One reason is that: 

the eigenvalues of a symmetric matrix are real and the eigenvectors are orthogonal. 

I'd like to show you in this section that symmetric matrices are not only nice, but they can be almost magical.

Autocorrelation matrices are symmetric. A good model for the autocorrelation matrix for  the intensity contrast of natural 
images is exponential drop-off:
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Plotting the eigenvectors of a symmetric matrix

size = 30;
length = 5;
w = Table[N[Exp[-Abs[i-j]/length],2],

{i,size},{j,size}];

e = Eigenvectors[w];

Let's plot a few of the eigenvectors of w:

g1 ListPlot e 2 , PlotJoined True, PlotStyle
RGBColor 1, 0, 0 , DisplayFunction Identity ;

g2 ListPlot e 4 ,
PlotJoined True, PlotStyle

RGBColor 0, 1, 0 , DisplayFunction Identity ;
g3 ListPlot e 8 ,
PlotJoined True, PlotStyle

RGBColor 0, 0, 1 , DisplayFunction Identity ;
Show g1, g2, g3, DisplayFunction $DisplayFunction ;

5 10 15 20 25 30

-0.2

-0.1

0.1

0.2

They sure look a lot like sinewaves, and in fact, they are pretty close. We will return to the significance of this later for 
models of self-organization of the weights of neurons in visual cortex.
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g4 = ListPlot[e[[5]],PlotJoined->False,Prolog->PointSize[
0.02],DisplayFunction -> Identity];
g5 = Plot[-Max[e[[5]]] Cos[(2 Pi (x-1.5))/14],{x,1,30},PlotStyle ->
     {RGBColor[1, 0, 0]},DisplayFunction -> Identity];
Show[g4,g5, DisplayFunction -> $DisplayFunction];

5 10 15 20 25 30

-0.2

-0.1

0.1

0.2

The eigenvalues for w have an interesting form as well:

lambda = Sort[Eigenvalues[w]];
ListPlot[N[lambda,1],PlotRange->{0,10}];

5 10 15 20 25 30

2

4

6

8

10

Exercise2

Verify that the eigenvectors of the symmetric matrix above (w) are orthogonal.

Exercise3

Try replacing the exponential in Exp[-Abs[i-j]] with another function, thereby defining a completely different 
symmetric matrix. Compare the plots of the eigenvectors for this symmetric matrix with those from the one above.
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Exercise 4

Construct a more interesting example of a 3x3 matrix in which the third row is a linear combination of the first two rows. 
Try to compute the inverse and determinant. 

Notice that for bigger matrices, it isn't immediately obvious whether the rows of a matrix are linearly independent or not--
and thus not immediately apparent whether the inverse exists. That is one reason why routines to calculate the determinant 
are useful.
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