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Topographic maps
Work in monkey, and human brain, shows that the cortex is characterized by numerous distinct areas. It has been estimated 

that there are more than 30 visual areas alone in the macaque cortex. The earlier areas typically show a spatial topographic 
representation of visual space--nearby regions of visual space map to nearby regions of cortex. The so-called retinotopic 

map of the primary visual area (V1) is the clearest example of this. For a recent study using brain imaging techniques in 

humans,  see: Engel et al. (1994).  Other areas of the brain also show geometrical organization. For example, the auditory 

cortex has a tonotopic map in which the spatial order of cell responses corresponds to pitch or acoustic frequency. The 
motor cortex also shows a spatial organization.

In regions of the cortex with no obvious spatial map, it is quite possible that other kinds of maps wait to be discovered. 

Tanaka and colleagues (Tanaka, 1996) have shown that region TE of the monkey inferotemporal cortex has columns with 
cells that have similar visual shape preferences. Along the surface of the cortex, receptive field properties may correspond 

to other kinds of variation, such as rotation in depth of a face, over limited extents (on the order of 1 mm or so).

The widespread use of spatial organization in cortex suggests the possibility of a general constraint underlying the 
development of neural receptive field organization. We know more about primary visual cortex than any other area, so let's 

take a closer look at what it does.



Dimension reduction framework for understanding cortical maps
Primary visual cortex does not simply have the job of representing nearby retinal points at nearby cortical locations. Much 
physiological research has shown that V1 brings together information from the two eyes, along similar orientations, as well 
as location. Together with anatomical studies, it is now well-established that neurons with similar orientation preferences 
and various degrees of relative input from the two eyes are organized into "hypercolumns" (See Figure below, and Lecture 
13). Hypercolumns preserve spatial contiguity and smoothness of the placement of neurons selective for features of the 
input. 

This observation suggests that a general principle may account for the organization and development of cortical maps: 
Neighboring points in feature or parameter space (e.g. orientation, ocular dominance, and retinal position) should map to 
nearby points on the 2D cortical sheet. (See: Durbin & Mitchison, 1990)

The underlying assumption is that most operations performed in the cortex are local, thus the related input for these 
computations should be physically near the computing units. For example, one task of vision is to go beyond the mere 
detection of contour segments, but to actually link contours that are likely to belong together to form a global object outline. 
Thus it would make sense to have the cells that signal similar orientations to be near. Visual information from the two eyes 
is close in the world, but separated by a great distance anatomically in the left and right eyes. This information needs to be 
brought physically together to process the two images binocularly, for example, to compute stereoscopic depth.
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Minimum wiring length constraint

à Nematode

A number of people have sought a simple organizational principle that would predict the spatial layout of neurons. One such 

principle is that the layout of nervous system components minimizes total connection cost. Christopher Cherniak, a 

philosopher at the University of Maryland calculated the total wiring length for the 40,000,000 possible layouts of the 10 
ganglia in the nematode worm. Remarkably, he reported that the layout the worm actually has is indeed the one with the 

shortest total connection length (Cherniak, 1991, 1995). (For criticisms of this result, see: http://york37.ncl.ac.uk/

replicate.html)  Similar arguments have been made by Cherniak and others for the layout of the multiple areas of cortex. 

The problem of minimizing connection lengths is also encountered in VLSI component layout in the design of computer 
chips. 

à Minimum wiring length & dimensionality reduction in cortical maps

Let's look at a simple and small version of the problem that Durbin and Mitchison addressed, that of mapping a higher 
dimensional parameter space to one of lower dimension. Suppose we have an NxN 2D feature space that we wish to map to 

a "1D cortex". Points in this 2D feature space can be represented by an index number, fij. assigned to the (i,j)th coordinate.  

There are several ways of assigning costs for various orderings.  Mitchison and Durbin analysed the following connection 
cost:

C( f ) = ∆ ij∑
∆ ij = f i, j +1 − f i, j

q
+ f i+1, j − f i, j

q

If q = 1, then the standard "raster" ordering, the index,

f ij = (i −1)N + j

gives a cost of:

C( f ) = N 3 − N
(In standard raster ordering, matrix rows are laid out one after the next in one long vector).

One interesting biological application of this principle was published by Durbin and Mitchison in Nature (1990). It is not 
computationally  feasible to find the minimum cost for dimensional reduction mappings of higher dimension, for example 
from (x,y,r,theta)->(x',y') as one would like to do for the formation of retinotopic and orientation maps in V1. The 
alternative is to see whether some biologically plausible rules could act to accomplish an efficient mapping of the higher 
dimensional feature space onto the 2D cortex.

Two biologically plausible rules are: 1) there are competitive winner-take-all interactions selective for distinct inputs 2) the 
units also strengthen their responses to those stimuli that their neighbors respond to. The first rule divides up the input 
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domain, and the second rule imposes a continuity constraint on the formation of a map. Durbin and Mitchison developed an 
algorithm which applied these rules and showed that the kind of 2D maps which developed looked very much like the visual 
cortical maps, revealed from photo-sensitive dye studies (e.g. T'so et al., 1990). 

Kohonen's algorithm for topology-preserving mappings

à Theory

The Finnish scientist, Teuvo Kohonen,  was the first to develop topology-preserving adaptive maps for neural networks  
(Kohonen, T. (1984).  Let's look at the basic structure of  a simple adaptive map.

Kohonen boiled the essential features of self-organizing topology-preserving maps down to two basic processes: 

1. Find the activity maximum of a set of neurons to an input. We assume that maximum activity occurs for patterns which 

match the receptive field (i.e. as with a cross-correlator).

2. Define a set of neighbors around this maximum, and make these neighbors more likely to respond to that input in the 

future by making their weights more like the input. Typically the neighborhood Nc starts off large, and is gradually reduced 

over time.

Let x be an n-dimensional vector representing a feature sample. Let mi be a k-dimensional vector representing the weights 

of the ith unit.  Specifically, we will use the following rules: 

Similarity matching.  Find unit c such that:

x(tk ) − mc (tk ) = min
i

x(tk ) − mi (tk )

Updating. Update the weights for unit c, and all the units within c's neighborhood:

mi (tk +1) =
mi (tk ) + α(tk )[x(tk ) − mi (tk )] for i ∈Nc

mi (tk )  otherwise



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Demonstration of Kohonen's algorithm for mapping 2D features to a 1D 
line

à Define functions

VectorLength[x_]:=Sqrt[x.x];

(*ramp[] is used below to define both the a() term,
and the rate of change of the neighborhood size *)

ramp[x_,yint_,end_,plat_] :=
If[(x>=end)||(-2*x*yint/end+yint<plat),plat,
-2*x*yint/end+yint];

(*rv samples the 2D "feature space"*)
rv := {Random[Real],Random[Real]};

(*These are alternative samplings to try
rvdiscrete := 1/8 + (Floor[(4 rv)]/4);
rvline := {xx=Random[Real],xx};*)

à Neighborhood function

The neighborhood function determines the neighbors, and thus the topology of the connections between the neurons. In our 

example, the neigborhood is 1-D and is defined along a line.

neigh[] is a  neighborhood function that produces a list of indices for the neighbors of unit c. We will not use a toroidal 

geometry here. Instead, neigh[] generates shorter lists of indices near the borders, so the min_ and max_ of the range need 

to be specified. This neighborhood function only defines neighbors along a line, i.e. in one dimension. You could elaborate 

this algorithm to find maps from 2D to 2D, allowing neighbors to be nearby regions of 2D space. 

neigh[c_,numneigh_,min_,max_]:=Module[{i,nn,temp},
temp = numneigh/2;
nn={};
For[i=c-temp,(i<=c+temp)&&(i<=max),i++,

If[i>=min,nn=Join[nn,{i}]];
];

Return[nn];
];
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à Initializing the simulation parameters

n is the number of nodes in the 1D line. mu  is the matrix with the weights that will get updated according to the above 

update rule. niter is the number of iterations. 

numneigh0 is the intial neighborhood size. If this is too small, the topography map can get tangled. We will start off with a 

neighborhood size that is 60-80% of the total size, n. 

n = 200;
mu = Table[rv,{j,1,n}];
g1 = ListPlot[mu,PlotRange->{{-.25,1},{-.25,1}},

AspectRatio->1,
PlotJoined->True, DisplayFunction->Identity];

niter = 2000;
numneigh0=Floor[.6*n/2];

(*Set the learning rate, and neighborhood size*)
eta[t_] := ramp[t,0.9,niter,0.1];
numneigh[t_] := 2 Floor[ramp[t,numneigh0,niter,2]];

Show[g1,DisplayFunction->$DisplayFunction];
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Let's take a look at how the neighborhood size and a =eta, decrease with the number of iterations, t :
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Plot[eta[t],{t,1,niter}];
Plot[numneigh[t],{t,1,niter},PlotRange->{0,2 numneigh0}];
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à The algorithm

We will make a series of plots, showing the first ten iterations, and after that sampling every 200. The plots will show how 
the matrix mu (which has the topography of a 1D line, because of the way we defined the neigh[] function) gradually fits 
itself to the geometry of the 2D input space.
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For[t=1,t<=niter,t++,

If[(Mod[t,200]==1) || t<=10,
gcolor = Graphics[Table[{Hue[i/n],PointSize[0.02],
Point[mu[[i]]]},{i,1,n}]];
Show[gcolor,Background->RGBColor[0,0,0],AspectRatio->1  ];

];

 (*Pick a uniformly distributed "feature" sample 
 from a 2D array*)
 

x=rv;

 (*Do the similarity matching. mini is the unit whose 
 weights best match the input *)
 

diffs = Map[VectorLength,Transpose[Transpose[mu]-x]];
minarg = Min[diffs];
mini = Part[Position[diffs,minarg],1,1];

 (*Make a list, j,  of the neighbors for this index,

 at this tth iteration *)

 
j=neigh[mini,numneigh[t],1,n];

 (*Update the weights in the neighborhood of i to move them 
    towards feature x, by eta proportion of the difference*)
    

For[s=1,s<=Length[j],s++,
mu[[ j[[s]] ]] = mu[[ j[[s]] ]] + 
eta[t] (x-mu[[j[[s]] ]])

];
];
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Let's summarize what we have done. There are 200 "neurons", each with 2 input weights, represented by matrix mu. We 
can imagine representing the weights of the these 200 neurons by a location in weight space. The point for each neuron is 
represented by a different hue in the graph above--neurons with similar hues are neighbors. We randomly sampled a 
location in the 2-dimensional parameter space defined by the unit square. We then surveyed the 200 neurons to see which 
one had input weights that were closest to the sampled location. Note that we don't actually have to calculate the response of 
the unit--which if linear would be the cross-correlation of the input with its weights. Then we adjusted the 2 weights of that 
neuron to move them closer to the sampled point. Further, we adjusted the weights of all of the neighbors of that neuron (i.e. 
those with similar hues) to be closer too. We reduced the size of the neighborhood as the number of iterations increased. So 
a unit's weights are less affected by distant activity as time goes on. The end result is that nearby points in feature space tend 
to activate nearby neurons that are arrayed in a 1-D line. For other interesting examples, and for a discussion of the 
relationship of Kohonen maps to space-filling curves, see Kohonen (1984).

Optional exercises

Compute the connection cost for the Kohonen adaptive map in the above example. Compare it to a raster scheme.

Try sampling from rvline, and watch how the algorithm learns the topology of the 1D input space.

Try playing with the intial neighborhood size, numneigh0. What happens if it starts off small, (e.g. let the number of 
neighbors be fixed at 2 throughout the similation). 

Define a 2D feature input space which is not rectangular. For example, rv could sample from a triangular or circular region 
within the unit square. 
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