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Sculpting energy landscapes: interpolation and gradient descent

Introduction: From energy to update rules
Earlier we studied how to set up the weights in discrete response TLU network for the correspondence problem in stereopsis.
The weights were determined by an analysis of the constraints needed to find a unique correspondence between the pixels in 
the left and right eyes. We didn't compute energy in that example, but pointed out that energy could play a useful role as an 
index to describe how well the network's state vector was moving towards the correct answer in state space. In particular, 
the energy function contains information about  the stable points in state space.

In effect, we sculpted the energy landscape by hand-wiring the weights according to the constraints that were determined 
heuristically.

In the TIP examples, we reconstructed stored letters from partial information. In that case, the weights were determined by 
Hebbian learning. So the energy landscape was sculpted by state vectors to be stored.

But we can also do things the other way around. Rather than figuring out the weights for a Hopfield-style network that has a 
known relationship to an energy function, we first specify the energy function, and then figure out an update rule that will 
descend the energy landscape. We followed an analogous strategy when we set up an error function in terms of weights, and 
then did gradient descent to find the weights that minimized the error to learn the weights. But one can also set up the 
analog to the error function (weights variable), that is an energy function of the state vector (weights fixed), and then use 
gradient descent to derive a rule to find minima of this energy function. From the point of view of neural networks, this 
update rule may look nothing like what neurons do. But it may be the best way to start--that is, by sculpting the energy 
function directly, not worrying about "weights", and then see what emerges in terms of an update rule.

We are going to follow this strategy in this notebook on a simple problem of interpolation. It will turn out that our update 
rule is the simplest neural model--a linear summer. However, this kind of analysis provides a starting point for more 
complicated energy functions with correspondingly non-linear update rules.

The energy function is sometimes referred to as a cost function or objective function.



Interpolation problems in perception
A major problem in computer vision has to do with the fact that changes in image intensities are usually ambiguous in 
natural images. A change in shading can mean an change in shape (or a change in illumination, e.g. a cast shadow). A 
change in image color can mean a change in the reflectivity of a surface. Changes of intensity of pixels in time provide 
information about surface structure, and the viewer's relation to that surface. In order to solve problems such as those above, 
researchers have studied special cases: shape-from-shading, reflectivity from color (color constancy), optic flow field from 
the flow of intensities, and more. One recurring theme in these problems is that the data available in the image does not 
fully constrain the estimate of the surface or surface properties one would like to compute. 

For example, consider the stereogram shown below:

If you can cross your eyes, so that the left image is in the right eye, and the right image in the left, you will see a green 
horizontal bar floating out in front of a green vertical bar. So-called "free-fusing" isn't easy, but when you've got it, you 
should see a total of three green crosses. The one in the middle is the one in which the two images are fused by your brain--
and this is the one we are talking about.

The interesting point here is that even though there is no local information in the image to support the percept of a 
horizontal occluding bar, observers still see an illusory completion. It looks a bit like the figure below, except that the color 
of the horizontal bar is changed here slightly just for illustration.

The visual system seems to interpolate  a surface between salient points--in this case the salient points are the vertical edge 
segments of the horizontal bar. 

(Side note: The perceptual interpolation in the above example is not straightforward. In fact, one's first guess might be that 
observers should not see the horizontal bar as a plane, but rather they would interpolate a surface that on the left is close to 
the viewer, but then descends back towards the depth of the vertical bar, stays there, and then comes back towards the 
viewer on the right. Why people usually don't see this has been studied by: Nakayama, K., & Shimojo, S. (1992).)
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We will study a simpler case of interpolation--namely filling in a line between feature points. We will do this by 
constructing an energy function first, and then calculating an update rule by gradient descent. But the same principles apply 
to computational models of stereopsis, shape-from-shading, optic flow and other problems in early visual processing.

Energy: Data and smoothness terms
There are two constraints that will guide the problem of sculpting an energy function to reconstruct a line (or surface): 1. 
Fidelity to the data; 2) Smoothness of the fit.

Suppose {di} are the data points, where the i's come from a subset, D of the total domain over which our reconstructed 

function, f is defined. Fidelity to the data can be represented by an energy term that is big if the estimate of f is too far away 
from the data:

Ed = f i - di( )
iÎD
å

2

Smoothness can be represented by an energy cost in which near-by values of the estimate, f, are required to be close:

Es = f i - f i+1( )2
i
å

We put these two constraints together just by adding:

E = Ed + Es = f i - di( )
iÎD
å

2
+ l f i - f i+1( )2

i
å

l is a free parameter that allows us to control how much the smoothing should dominate the data or fidelity term. Note that 

the smoothness term is independent of the data, and is equivalent to assuming a Bayesian prior in statistics (Poggio et al., 
1988; Kersten et al., 1987).

If we wish to start off with some initial guess for the values of f, we can successively improve our estimate by sliding down 

the slope of E in the steepest direction. This says that the rate of change of fi in time should be proportional to the negative 

slope of E in the direction of fi

df i
dt

= -
¶E
¶f i

à Proof, in case you are still wondering:

  
DE E df E df= Ñ · = Ñ

r r
cosq
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For step Dt, the biggest decrease in E is when cosq = -1:

  Ñ = -E df
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As mentioned above, we've encountered the gradient descent when we calculated the derivative of the error function with 
respect to the weights.

Expanding E, with a little (we use Mathematica  below to verify the pattern of the terms in the derivative), we find:

df i
dt

µ - f i - di( ) - l 2 f i - f i+1 - f i-1( )
Or in discrete time steps of dt, 

f i (t + dt) = f i + dt -2 f i - di( ) - 2l 2 f i - f i+1 - f i-1( ){ }
(Note: There is a slightly messy issue of book-keeping in that, we have to pay attention to when we are updating f's that 
don't have data support. We show one way to handle that below.) 

With a little inspection, you can see that the value of f at time t+dt, is just the weighted sum of the values of f at time t, and 
the data, d. A weighted sum calculation is exactly what our linear model of a neuron does. So we've derived an update rule 
for our energy function that could be implemented with a standard neural model.

What is the weight matrix? Are the diagonals zero? Is the matrix symmetric?

It turns out that as long as the energy function is a quadratic function of the f's, the update rule will be linear. Why?

The power of this approach is that one can construct more complicated energy functions, and derive gradient descent update 
rules that are not linear but can be used to find solutions. For example, the world we see is not constructed from one smooth 
surface, but is better modeled as a set of surfaces separated by discontinuities. An energy function can be constructed that 
explicitly models these discontinuities and their effects on the interpolated values. The energy function in this case is no 
longer quadratic, and the update rule computes more than a weight sum. This usually brings the additional problem of local 
energy minima that we will study in the next lecture.

For  examples of constructing a more complicated energy functions with discontinuities, see: Kersten, D. J. (1991) and 
Kersten and Madarsmi (1995).
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Reconstructing a smooth line: interpolation using smoothness 
constraints

First-order smoothness

Suppose we have sampled a function at a discrete random set of points xs. Multiplying the sine function by the vector xs 
picks out the values at the sample points at each location of the vector where xs is one, and sets the others to zero.

size = 60;
xs = Table[Random[Integer,1], {i,1,size}];
data = Table[N[Sin[2 Pi (1/10) j] xs[[j]]],
{j, 1, size}];

g3 = ListPlot[Table[N[Sin[2 Pi (1/10) j]], {j, 1, size}],
PlotJoined->True,DisplayFunction->Identity,

PlotStyle->{RGBColor[0,.5,0]}];
g2 = ListPlot[data,PlotJoined->False,
PlotStyle->{RGBColor[.75,.0,0]}, Prolog-> AbsolutePointSize[5],
DisplayFunction->Identity];

Show[g2,g3,DisplayFunction->$DisplayFunction];
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We would like to find a smooth function, f[], approximation to the non-zero data points, given the assumption that we don't 
know what the underlying function actually is. 

We have one constraint already--the fidelity constraint that requires that the function f should be close to the non-zero data, 
d. We will use this to construct the "energy" term that measures how close they are in terms of the sum of the squared error.

We need another constraint--smoothness--to get the in-between points. There are many ways of doing this. If we had a 
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priori knowledge that the underlying curve was periodic, we'd try fitting the data with some combination of sinusoids. 
Suppose we don't know this, but do have reason to believe that the underlying function is smooth in the sense of nearby 
points being close. As above, let's assume that the difference between nearby points should  be small. That is, the sum of the 
squared errors, f[i+1] - f[i], gives us the second part of our energy function.

 Let's make up a small 8 element energy vector:

energyvector =
Table[(f[i+1] - f[i])^2 + s[i] (d[i] - f[i])^2,

{i,1,8}];

energy = Sum[energyvector[[j]],{j,1,8}];

The s[i] term is the "filter"  (the same as xs above) that only includes data points in the data part of the energy function. It is 
zero for i's where there are no data, and one for the points where there are data.

We would like to find the f[] that makes this energy a minimum. We can do this by calculating the derivative of the energy 
with respect to each component of f,  and moving the state vector in a direction to minimize the energy--i.e. in the direction 
of the negative of the gradient.

It can be messy to keep track of all the indices in these derivatives, so let's let Mathematica calculate the derivative for f[3]. 
From this we can see the pattern for any index.

D[energy, f[3]]

2 (-f[2] + f[3]) - 2 (-f[3] + f[4]) - 2 (d[3] - f[3]) s[3]

Simplify[%]

2 (-f[2] + 2 f[3] - f[4] - d[3] s[3] + f[3] s[3])

Now we could generate the full set of derivatives, set them equal to zero and solve for f, using standard linear algebra to 
solve a set of linear equations. This will work because the energy function is quadratic in elements of  f, and thus the 
derivatives are linear in f.The interpolation function is then a matrix operation on the data. Life won't always be that easy, 
and the situation often arises in which the energy function is not quadratic. 

So the alternative, which can work in the non-linear case, is to use what we introduced above--gradient descent. We can do 
this by expressing the derivative in terms of two matrix operations: One on the function to be estimated, f, and one on the 
data. 

Let's set up these two matrices, Tm and Sm such that the gradient of the energy is equal to:

 Tm . f - Sm . f.  Sm will be our filter to exclude non-data points. Tm will express the "smoothness" constraint.
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Sm = DiagonalMatrix[xs];
Tm = Table[0,{i,1,size},{j,1,size}];
For[i=1,i<=size,i++,Tm[[i,i]] = xs[[i]]+2];
For[i=1,i<size,i++, Tm[[i+1,i]] = -1];
For[i=1,i<size,i++, Tm[[i,i+1]] = -1];

dt = 0.1; 
Tf[f1_] := f1 - dt (Tm.f1 - Sm.data);

We will initialize the state vector to zero, and then run the network for 30 iterations:

f = Table[0,{i,1,size}];
result = Nest[Tf,f,30];

Here is our smoothed function:

g1 = ListPlot[result,PlotJoined->True];
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You can see below that the function was not interpolated--the fit doesn't not pass through the data points. If we wanted more 
fidelity to the data, we could control this by increasing the weight given to the data part of the energy term relative to the 
smoothness part.
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Show[{g1,g2,g3}];                                                           
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Optional exercise:

Decrease the parameter controlling smoothness to see if you get better fidelity.

Sculpting for interpolation using second order smoothness constraints

This section elaborates the energy function (and weight matrix) to require that both first and second order differences be 
small.

Clear[energy,energyvector,f,d,s,data];

energyvector = 
Table[(f[i+1] - f[i])^2 + (f[i+2] - 2 f[i] + f[i+1])^2 + s[i] (d[i] - f[
i])^2,{i,1,8}];

energy = Sum[energyvector[[j]],{j,1,8}];

By taking the derivative of the energy with respect to one of the interpolation depths, say f[3], we can see the pattern of the 
weights for the gradient descent update rule:

D[energy, f[3]]

2 (-f[2] + f[3]) + 2 (-2 f[1] + f[2] + f[3]) - 2 (-f[3] + f[4]) +    2 (-2 f[2] + f[3] + f[4]) - 4 (-2 f[3] + f[4] + f[5]) - 2 (d[3] - f[3]) s[3

8 Lect_17_Mathematica.nb



Simplify[%]

2 (-2 f[1] - 2 f[2] + 8 f[3] - 2 f[4] - 2 f[5] - d[3] s[3] + f[3] s[3])

Now we simulate the sampled data, and then set up the weight matrix:

size = 60;
xs = Table[Random[Integer,1], {i,1,size}];
data = Table[N[Sin[2 Pi (1/20) j] xs[[j]]],
{j, 1, size}];

Sm = DiagonalMatrix[xs];
Tm = Table[0,{i,1,size},{j,1,size}];
For[i=1,i<=size,i++,Tm[[i,i]] = xs[[i]]+8];
For[i=1,i<size,i++, Tm[[i+1,i]] = -2];
For[i=1,i<size,i++, Tm[[i,i+1]] = -2];
For[i=1,i<(size-1),i++, Tm[[i+2,i]] = -2];
For[i=1,i<(size-1),i++, Tm[[i,i+2]] = -2];

We will give the smoothness term a little more weight:

dt = 0.1; 
Tf[f1_] := f1 - dt (Tm.f1 - .3 Sm.data);

f = Table[0,{i,1,size}];
result = Nest[Tf,f,30];

g1 = ListPlot[result,PlotJoined->True,PlotRange->{-1,1},
DisplayFunction->Identity];

g2 = ListPlot[data,PlotJoined->False,PlotRange->{-1,1},
PlotStyle->{RGBColor[.75,.0,0]}, Prolog-> AbsolutePointSize[5],
DisplayFunction->Identity];
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Show[g1,g2,DisplayFunction->$DisplayFunction];
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